Jack Evans Jack Evans
0 دورة ملتحَق بها • 0 اكتملت الدورةسيرة شخصية
素敵なMLS-C01参考書内容試験-試験の準備方法-正確的なMLS-C01認定試験
さらに、PassTest MLS-C01ダンプの一部が現在無料で提供されています:https://drive.google.com/open?id=1NyDpq8pGI2oKPJjWqU34pg34GSwEzkKv
これらの2つの特性により、MLS-C01ガイドトレントを使用するほぼすべての候補者が一度にテストに合格できることがわかります。これは自己決定ではありません。統計によると、当社のMLS-C01ガイドトレントは98%〜99%の高い合格率を達成しており、これは他のすべてをかなり上回る程度です。同時に、MLS-C01テストトレントが毎日更新されるかどうかを確認する専門スタッフがいます。メールでお問い合わせいただく場合でも、オンラインでお問い合わせいただく場合でも、できるだけ早く問題を解決できるようサポートいたします。心配する必要はまったくありません。
AWS認定マシンラーニングスペシャリティ認定試験は、AWSプラットフォームでの機械学習に関する専門知識を実証したい専門家にとって貴重な資格です。この認定は、AWSに機械学習モデルを設計、実装、および展開する個人の能力を検証し、試験に合格すると、AWS認定コミュニティへの雇用機会の増加とアクセスにつながる可能性があります。
MLS-C01認定試験 & MLS-C01資格関連題
周りの多くの人は全部Amazon MLS-C01資格認定試験にパースしまして、彼らはどのようにできましたか。今には、あなたにPassTestを教えさせていただけませんか。我々社サイトのAmazon MLS-C01問題庫は最新かつ最完備な勉強資料を有して、あなたに高品質のサービスを提供するのはMLS-C01資格認定試験の成功にとって唯一の選択です。躊躇わなくて、PassTestサイト情報を早く了解して、あなたに試験合格を助かってあげますようにお願いいたします。
Amazon MLS-C01 認定を取得することで、AWSサービスを使用して複雑な機械学習の問題を解決する能力が証明されます。この認定は、AWSクラウドプラットフォームで機械学習モデルを設計、開発、展開するスキルを検証します。この認定を取得することで、潜在的な雇用主やクライアントに自己の専門知識をアピールし、機械学習の分野でのキャリア機会を増やすことができます。
Amazon AWS Certified Machine Learning - Specialty 認定 MLS-C01 試験問題 (Q69-Q74):
質問 # 69
A logistics company needs a forecast model to predict next month's inventory requirements for a single item in
10 warehouses. A machine learning specialist uses Amazon Forecast to develop a forecast model from 3 years of monthly data. There is no missing data. The specialist selects the DeepAR+ algorithm to train a predictor. The predictor means absolute percentage error (MAPE) is much larger than the MAPE produced by the current human forecasters.
Which changes to the CreatePredictor API call could improve the MAPE? (Choose two.)
- A. Set PerformHPO to true.
- B. Set PerformAutoML to true.
- C. Set FeaturizationMethodName to filling.
- D. Set ForecastHorizon to 4.
- E. Set ForecastFrequency to W for weekly.
正解:A、E
解説:
Explanation/Reference: https://docs.aws.amazon.com/forecast/latest/dg/forecast.dg.pdf
質問 # 70
A Machine Learning Specialist is building a convolutional neural network (CNN) that will classify 10 types of animals. The Specialist has built a series of layers in a neural network that will take an input image of an animal, pass it through a series of convolutional and pooling layers, and then finally pass it through a dense and fully connected layer with 10 nodes The Specialist would like to get an output from the neural network that is a probability distribution of how likely it is that the input image belongs to each of the 10 classes Which function will produce the desired output?
- A. Softmax
- B. Smooth L1 loss
- C. Rectified linear units (ReLU)
- D. Dropout
正解:A
質問 # 71
A financial services company is building a robust serverless data lake on Amazon S3. The data lake should be flexible and meet the following requirements:
* Support querying old and new data on Amazon S3 through Amazon Athena and Amazon Redshift Spectrum.
* Support event-driven ETL pipelines.
* Provide a quick and easy way to understand metadata.
Which approach meets trfese requirements?
- A. Use an AWS Glue crawler to crawl S3 data, an Amazon CloudWatch alarm to trigger an AWS Batch job, and an AWS Glue Data Catalog to search and discover metadata.
- B. Use an AWS Glue crawler to crawl S3 data, an AWS Lambda function to trigger an AWS Batch job, and an external Apache Hive metastore to search and discover metadata.
- C. Use an AWS Glue crawler to crawl S3 data, an Amazon CloudWatch alarm to trigger an AWS Glue ETL job, and an external Apache Hive metastore to search and discover metadata.
- D. Use an AWS Glue crawler to crawl S3 data, an AWS Lambda function to trigger an AWS Glue ETL job, and an AWS Glue Data catalog to search and discover metadata.
正解:D
質問 # 72
A credit card company wants to identify fraudulent transactions in real time. A data scientist builds a machine learning model for this purpose. The transactional data is captured and stored in Amazon S3. The historic data is already labeled with two classes: fraud (positive) and fair transactions (negative). The data scientist removes all the missing data and builds a classifier by using the XGBoost algorithm in Amazon SageMaker. The model produces the following results:
* True positive rate (TPR): 0.700
* False negative rate (FNR): 0.300
* True negative rate (TNR): 0.977
* False positive rate (FPR): 0.023
* Overall accuracy: 0.949
Which solution should the data scientist use to improve the performance of the model?
- A. Undersample the minority class.
- B. Oversample the majority class.
- C. Apply the Synthetic Minority Oversampling Technique (SMOTE) on the minority class in the training dataset. Retrain the model with the updated training data.
- D. Apply the Synthetic Minority Oversampling Technique (SMOTE) on the majority class in the training dataset. Retrain the model with the updated training data.
正解:C
解説:
The solution that the data scientist should use to improve the performance of the model is to apply the Synthetic Minority Oversampling Technique (SMOTE) on the minority class in the training dataset, and retrain the model with the updated training data. This solution can address the problem of class imbalance in the dataset, which can affect the model's ability to learn from the rare but important positive class (fraud).
Class imbalance is a common issue in machine learning, especially for classification tasks. It occurs when one class (usually the positive or target class) is significantly underrepresented in the dataset compared to the other class (usually the negative or non-target class). For example, in the credit card fraud detection problem, the positive class (fraud) is much less frequent than the negative class (fair transactions). This can cause the model to be biased towards the majority class, and fail to capture the characteristics and patterns of the minority class. As a result, the model may have a high overall accuracy, but a low recall or true positive rate for the minority class, which means it misses many fraudulent transactions.
SMOTE is a technique that can help mitigate the class imbalance problem by generating synthetic samples for the minority class. SMOTE works by finding the k-nearest neighbors of each minority class instance, and randomly creating new instances along the line segments connecting them. This way, SMOTE can increase the number and diversity of the minority class instances, without duplicating or losing any information. By applying SMOTE on the minority class in the training dataset, the data scientist can balance the classes and improve the model's performance on the positive class1.
The other options are either ineffective or counterproductive. Applying SMOTE on the majority class would not balance the classes, but increase the imbalance and the size of the dataset. Undersampling the minority class would reduce the number of instances available for the model to learn from, and potentially lose some important information. Oversampling the majority class would also increase the imbalance and the size of the dataset, and introduce redundancy and overfitting.
References:
1: SMOTE for Imbalanced Classification with Python - Machine Learning Mastery
質問 # 73
While working on a neural network project, a Machine Learning Specialist discovers thai some features in the data have very high magnitude resulting in this data being weighted more in the cost function What should the Specialist do to ensure better convergence during backpropagation?
- A. Data augmentation for the minority class
- B. Data normalization
- C. Dimensionality reduction
- D. Model regulanzation
正解:B
解説:
Explanation
Data normalization is a data preprocessing technique that scales the features to a common range, such as [0, 1] or [-1, 1]. This helps reduce the impact of features with high magnitude on the cost function and improves the convergence during backpropagation. Data normalization can be done using different methods, such as min-max scaling, z-score standardization, or unit vector normalization. Data normalization is different from dimensionality reduction, which reduces the number of features; model regularization, which adds a penalty term to the cost function to prevent overfitting; and data augmentation, which increases the amount of data by creating synthetic samples. References:
Data processing options for AI/ML | AWS Machine Learning Blog
Data preprocessing - Machine Learning Lens
How to Normalize Data Using scikit-learn in Python
Normalization | Machine Learning | Google for Developers
質問 # 74
......
MLS-C01認定試験: https://www.passtest.jp/Amazon/MLS-C01-shiken.html
- 試験MLS-C01参考書内容 - 一生懸命にMLS-C01認定試験 | 実際的なMLS-C01資格関連題 🅱 ウェブサイト➠ www.pass4test.jp 🠰を開き、⇛ MLS-C01 ⇚を検索して無料でダウンロードしてくださいMLS-C01資格試験
- 試験の準備方法-効率的なMLS-C01参考書内容試験-完璧なMLS-C01認定試験 🌒 ウェブサイト➤ www.goshiken.com ⮘を開き、➽ MLS-C01 🢪を検索して無料でダウンロードしてくださいMLS-C01資格試験
- 試験の準備方法-ユニークなMLS-C01参考書内容試験-効果的なMLS-C01認定試験 👌 ➽ www.japancert.com 🢪サイトにて最新{ MLS-C01 }問題集をダウンロードMLS-C01試験解説
- 試験の準備方法-一番優秀なMLS-C01参考書内容試験-検証するMLS-C01認定試験 🐠 ( www.goshiken.com )を開き、➡ MLS-C01 ️⬅️を入力して、無料でダウンロードしてくださいMLS-C01復習内容
- MLS-C01試験解説 💗 MLS-C01シュミレーション問題集 🧛 MLS-C01受験体験 💥 ➡ MLS-C01 ️⬅️を無料でダウンロード▷ www.japancert.com ◁ウェブサイトを入力するだけMLS-C01復習内容
- ユニークなAmazon MLS-C01参考書内容 - 合格スムーズMLS-C01認定試験 | 便利なMLS-C01資格関連題 🧸 【 www.goshiken.com 】から簡単に▷ MLS-C01 ◁を無料でダウンロードできますMLS-C01実際試験
- MLS-C01資格受験料 🥨 MLS-C01復習内容 💈 MLS-C01参考書勉強 🛫 URL ⇛ www.it-passports.com ⇚をコピーして開き、☀ MLS-C01 ️☀️を検索して無料でダウンロードしてくださいMLS-C01日本語講座
- 試験の準備方法-実用的なMLS-C01参考書内容試験-認定するMLS-C01認定試験 🔅 ⇛ www.goshiken.com ⇚を開き、⇛ MLS-C01 ⇚を入力して、無料でダウンロードしてくださいMLS-C01試験解説
- 試験の準備方法-ユニークなMLS-C01参考書内容試験-効果的なMLS-C01認定試験 🦑 URL ➠ www.pass4test.jp 🠰をコピーして開き、【 MLS-C01 】を検索して無料でダウンロードしてくださいMLS-C01日本語対策
- MLS-C01シュミレーション問題集 🪕 MLS-C01日本語講座 ⌚ MLS-C01出題範囲 🐼 今すぐ⇛ www.goshiken.com ⇚を開き、⇛ MLS-C01 ⇚を検索して無料でダウンロードしてくださいMLS-C01参考書勉強
- MLS-C01専門試験 🐽 MLS-C01勉強の資料 🧞 MLS-C01参考書勉強 ↙ ウェブサイト[ www.japancert.com ]を開き、⇛ MLS-C01 ⇚を検索して無料でダウンロードしてくださいMLS-C01資格受験料
- paulcla939.blogitright.com, www.stes.tyc.edu.tw, raeverieacademy.com, www.rohitgaikwad.com, www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, e-learning.gastroinnovation.eu, www.stes.tyc.edu.tw, www.stes.tyc.edu.tw
2025年PassTestの最新MLS-C01 PDFダンプおよびMLS-C01試験エンジンの無料共有:https://drive.google.com/open?id=1NyDpq8pGI2oKPJjWqU34pg34GSwEzkKv